Advanced Hub Main Navigation Menu
Cell-Sheet Shape Transformation by Internally-Driven, Oriented Forces
Junrou Huang
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
Search for more papers by this authorJuan Chen
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
Search for more papers by this authorCorresponding Author
Yimin Luo
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
E-mail: [email protected]
Search for more papers by this authorJunrou Huang
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
Search for more papers by this authorJuan Chen
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
Search for more papers by this authorCorresponding Author
Yimin Luo
Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave, New Haven, CT, 06511 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
During morphogenesis, cells collectively execute directional forces that drive the programmed folding and growth of the layers, forming tissues and organs. The ability to recapitulate aspects of these processes in vitro will constitute a significant leap forward in the field of tissue engineering. Free-standing, self-organizing, cell-laden matrices are fabricated using a sequential deposition approach that uses liquid crystal-templated hydrogel fibers to direct cell arrangements. The orientation of hydrogel fibers is controlled using flow or boundary cues, while their microstructures are controlled by depletion interaction and probed by scattering and microscopy. These fibers effectively direct cells embedded in a collagen matrix, creating multilayer structures through contact guidance and by leveraging steric interactions amongst the cells. In uniformly aligned cell matrices, oriented cells exert traction forces that can induce preferential contraction of the matrix. Simultaneously, the matrix densifies and develops anisotropy through cell remodeling. Such an approach can be extended to create cell arrangements with arbitrary in-plane patterns, allowing for coordinated cell forces and pre-programmed, macroscopic shape changes. This work reveals a fundamentally new path for controlled force generation, emphasizing the role of a carefully designed initial orientational field for manipulating shape transformations of reconstituted matrices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data collected and the analysis codes generated for this study are available through a permanent DOI on Dryad: https://doi.org/10.5061/dryad.8gtht770q.
Supporting Information
Filename | Description |
---|---|
adma202416624-sup-0001-SuppMat.pdf26.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. M. da Silva, J.-P. Vincent, Development 2007, 134, 3049.
- 2Y. Gong, C. Mo, S. E. Fraser, Nature 2004, 430, 689.
- 3R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J. M. García-Aznar, J. J. Mu noz, P. Roca-Cusachs, X. Trepat, Science 2016, 353, 1157.
- 4P. A. Janmey, D. A. Fletcher, C. A. Reinhart-King, Physiol. Rev. 2020, 100, 695.
- 5B. J. DuChez, A. D. Doyle, E. K. Dimitriadis, K. M. Yamada, Biophys. J. 2019, 116, 670.
- 6F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery, O. Campas, Nat. Methods 2017, 14, 181.
- 7U. Doha, O. Aydin, M. S. H. Joy, B. Emon, W. Drennan, M. T. A. Saif, Acta Biomater. 2022, 154, 290.
- 8F. Grinnell, Trends Cell Biol. 2000, 10, 362.
- 9E. Bell, B. Ivarsson, C. Merrill, Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 1274.
- 10Y. Luo, M. Gu, M. Park, X. Fang, Y. Kwon, J. M. Urue na, J. Read de Alaniz, M. E. Helgeson, C. M. Marchetti, M. T. Valentine, J. R. Soc. Interface 2023, 20, 20230160.
- 11Q. L. Zhu, C. Du, Y. Dai, M. Daab, M. Matejdes, J. Breu, W. Hong, Q. Zheng, Z. L. Wu, Nat. Comm. 2020, 11, 5166.
- 12T. Okano, N. Yamada, M. Okuhara, H. Sakai, Y. Sakurai, Biomaterials 1995, 16, 297.
- 13K. Takada, T. Noda, T. Kobayashi, T. Harimoto, M. Singh, T. Kaneko, Polym. J. 2021, 53, 1223.
- 14Y. Ideses, V. Erukhimovitch, R. Brand, D. Jourdain, J. S. Hernandez, U. Gabinet, S. A. Safran, K. Kruse, A. Bernheim-Groswasser, Nat. Comm. 2018, 9, 2461.
- 15M. K. Abdelrahman, R. J. Wagner, M. S. Kalairaj, M. Zadan, M. H. Kim, L. K. Jang, S. Wang, M. Javed, A. Dana, K. A. Singh, et al., Nat. Mater. 2024, 23, 281.
- 16A. J. Hughes, H. Miyazaki, M. C. Coyle, J. Zhang, M. T. Laurie, D. Chu, Z. Vavrušová, R. A. Schneider, O. D. Klein, Z. J. Gartner, Dev. Cell 2018, 44, 165.
- 17L. Rivera-Tarazona, V. Bhat, H. Kim, Z. Campbell, T. Ware, Sci. Adv. 2020, 6, eaax8582.
- 18R. T. Tranquillo, M. A. Durrani, A. G. Moon, Cytotechnology 1992, 10, 225.
- 19S. I. Fraley, P.-h. Wu, L. He, Y. Feng, R. Krisnamurthy, G. D. Longmore, D. Wirtz, Sci. Rep. 2015, 5, 14580.
- 20K. Burridge, FEBS J. 2017, 284, 3355.
- 21N. K. Weidenhamer, R. T. Tranquillo, Tissue Eng. Part C Methods 2013, 19, 386.
- 22J. Y. Lichtenberg, C. E. Leonard, H. R. Sterling, V. Santos Agreda, P. Y. Hwang, ACS Biomater. Sci. Eng. 2024.
- 23M. E. Prendergast, M. D. Davidson, J. A. Burdick, Biofabrication 2021, 13, 044108.
- 24M. D. Davidson, M. E. Prendergast, E. Ban, K. L. Xu, G. Mickel, P. Mensah, A. Dhand, P. A. Janmey, V. B. Shenoy, J. A. Burdick, Sci. Adv. 2021, 7, eabi8157.
- 25T. Turiv, J. Krieger, G. Babakhanova, H. Yu, S. V. Shiyanovskii, Q.-H. Wei, M.-H. Kim, O. D. Lavrentovich, Sci. Adv. 2020, 6, eaaz6485.
- 26K. D. Endresen, M. Kim, M. Pittman, Y. Chen, F. Serra, Soft Matter 2021, 17, 5878.
- 27Y. Maroudas-Sacks, K. Keren, Annu. Rev. Cell Dev. Biol. 2021, 37, 469.
- 28Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib, A. Livshits, E. Braun, K. Keren, Nat. Phys. 2021, 17, 251.
- 29N. D. Bade, R. D. Kamien, R. K. Assoian, K. J. Stebe, Soft Matter 2018, 14, 6867.
- 30G. Duclos, S. Garcia, H. Yevick, P. Silberzan, Soft Matter 2014, 10, 2346.
- 31C. Londono, M. J. Loureiro, B. Slater, P. B. Lücker, J. Soleas, S. Sathananthan, J. S. Aitchison, A. J. Kabla, A. P. McGuigan, Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1807.
- 32G. Duclos, C. Erlenkämper, J.-F. Joanny, P. Silberzan, Nat. Phys. 2017, 13, 58.
- 33T. B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C. T. Lim, J. M. Yeomans, B. Ladoux, Nature 2017, 544, 212.
- 34H. Chaté, Annu. Rev. Condens. Matter Phys. 2020, 11, 189.
- 35D. Martella, L. Pattelli, C. Matassini, F. Ridi, M. Bonini, P. Paoli, P. Baglioni, D. S. Wiersma, C. Parmeggiani, Adv. Healthcare Mater. 2019, 8, 1801489.
- 36H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, S. Yang, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7206.
- 37O. D. Lavrentovich, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7171.
- 38M. J. Shin, S. H. Im, W. Kim, H. Ahn, T. J. Shin, H. J. Chung, D. K. Yoon, Langmuir 2022, 38, 3765.
- 39H. Lee, W. Kim, J. Lee, J. J. Yoo, G. H. Kim, S. J. Lee, ACS Appl. Mater. Interfaces 2019, 11, 39449.
- 40J. Chen, Y. Luo, ACS Appl. Mater. Interfaces 2024, 16, 33223.
- 41N. Zimmermann, G. Jünnemann-Held, P. J. Collings, H.-S. Kitzerow, Soft Matter 2015, 11, 1547.
- 42L. Tortora, O. D. Lavrentovich, Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5163.
- 43H. Baza, T. Turiv, B.-X. Li, R. Li, B. M. Yavitt, M. Fukuto, O. D. Lavrentovich, Soft Matter 2020, 16, 8565.
- 44R. Koizumi, D. Golovaty, A. Alqarni, B.-X. Li, P. J. Sternberg, O. D. Lavrentovich, Sci. Adv. 2023, 9, eadf3385.
- 45Y. Yang, E. Barry, Z. Dogic, M. F. Hagan, Soft Matter 2012, 8, 707.
- 46R. Koizumi, B.-X. Li, O. D. Lavrentovich, Crystals 2019, 9, 160.
- 47C. Lotz, F. F. Schmid, E. Oechsle, M. G. Monaghan, H. Walles, F. Groeber-Becker, ACS Appl. Mater. Interfaces 2017, 9, 20417.
- 48A. Smith, T. Watkins, G. Theocharidis, I. Lang, M. Leschinsky, A. Maione, O. Kashpur, T. Raimondo, S. Rahmani, J. Baskin, et al., Tissue Eng. Part C Methods 2021, 27, 49.
- 49P. Fernandez, A. R. Bausch, Integr. Biol. 2009, 1, 252.
- 50T. J. White, D. J. Broer, Nat. Mater. 2015, 14, 1087.
- 51C. Peng, Y. Guo, T. Turiv, M. Jiang, Q.-H. Wei, O. D. Lavrentovich, Adv. Mater. 2017, 29, 1606112.
- 52J. Chen, A. S. Johnson, J. Weber, O. I. Akomolafe, J. Jiang, C. Peng, Adv. Intell. Syst. 2022, 4, 2100233.
- 53H. Yoshida, K. Asakura, J.-i. Fukuda, M. Ozaki, Nat. Comm. 2015, 6, 7180.
- 54P. Guillamat, C. Blanch-Mercader, G. Pernollet, K. Kruse, A. Roux, Nat. Mater. 2022, 21, 588.
- 55A. L. Folpe, T. Mentzel, H.-A. Lehr, C. Fisher, B. L. Balzer, S. W. Weiss, Am. J. Surg. Pathol. 2005, 29, 1558.
- 56Y. Miranda-Negrón, J. E. García-Arrarás, Front. Neurosci. 2022, 16, 1006037.
- 57N. L'Heureux, L. Germain, R. Labbé, F. A. Auger, J Vasc Surg 1993, 17, 499.
- 58K. Endresen, A. Murali, F. Serra, arXiv preprint arXiv:2411.17834 2024.
- 59R. Kazama, S. Fujita, S. Sakai, Cells 2022, 12, 69.
- 60B. V. Sridhar, J. L. Brock, J. S. Silver, J. L. Leight, M. A. Randolph, K. S. Anseth, Adv. Healthcare Mater. 2015, 4, 702.
- 61J. S. Miller, C. J. Shen, W. R. Legant, J. D. Baranski, B. L. Blakely, C. S. Chen, Biomaterials 2010, 31, 3736.
- 62S. Phogat, F. Thiam, S. Al Yazeedi, F. A. Abokor, E. T. Osei, Respir. Res. 2023, 24, 242.
- 63S. Ostrovidov, S. Ahadian, J. Ramon-Azcon, V. Hosseini, T. Fujie, S. P. Parthiban, H. Shiku, T. Matsue, H. Kaji, M. Ramalingam, et al., J. Tissue Eng. Regen. Med. 2017, 11, 582.
- 64E. D'Arcangelo, A. P. McGuigan, Biotechniques 2015, 58, 13.
- 65E. Mailand, E. Özelçi, J. Kim, M. Rüegg, O. Chaliotis, J. Märki, N. Bouklas, M. S. Sakar, Adv. Mater. 2022, 34, 2106149.
- 66S. Wang, D. P. Maruri, J. M. Boothby, X. Lu, L. K. Rivera-Tarazona, V. D. Varner, T. H. Ware, J. Mater. Chem. B 2020, 8, 6988.
- 67J. Chen, O. I. Akomolafe, N. P. Dhakal, M. Pujyam, O. Skalli, J. Jiang, C. Peng, ACS Appl. Mater. Interfaces 2022, 14, 7230.
- 68C. W. Barney, M. E. Helgeson, M. T. Valentine, Extreme Mech. Lett. 2022, 52, 101616.