Advanced Hub Main Navigation Menu
Tunable High-Temperature Tunneling Magnetoresistance in All-van der Waals Antiferromagnet/Semiconductor/Ferromagnet Junctions
Wen Jin
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorXinlu Li
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorGaojie Zhang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorHao Wu
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiaokun Wen
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorLi Yang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorJie Yu
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorBichen Xiao
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorFei Guo
Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
Search for more papers by this authorWenfeng Zhang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorCorresponding Author
Jia Zhang
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haixin Chang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWen Jin
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorXinlu Li
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorGaojie Zhang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorHao Wu
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiaokun Wen
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorLi Yang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorJie Yu
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorBichen Xiao
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorFei Guo
Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
Search for more papers by this authorWenfeng Zhang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Search for more papers by this authorCorresponding Author
Jia Zhang
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haixin Chang
Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen, 518000 China
Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Magnetic tunnel junctions (MTJs) are widely applied in spintronic devices for efficient spin detection through the imbalance of spin polarization at the Fermi level. The van der Waals (vdW) property of 2D magnets with atomically flat surfaces and negligible surface roughness greatly facilitates the development of MTJs, primarily in ferromagnets. Here, A-type antiferromagnetism in 2D vdW single-crystal (Fe0.8Co0.2)3GaTe2 is reported with TN ≈ 203 K in bulk and ≈ 185 K in 9-nm nanosheets. The metallic nature and out-of-plane magnetic anisotropy make it a suitable candidate for MTJ electrodes. By constructing heterostructures based on (Fe0.8Co0.2)3GaTe2/WSe2/Fe3GaTe2, a large tunneling magnetoresistance (TMR) ratio of 180% at low temperature is obtained, with the TMR signal persisting at near-room temperature 280 K. Furthermore, the TMR is tunable by the electric field, and the MTJ device operates stably with a low applied bias down to 1 mV (≈0.6 nA), highlighting its potential for energy-efficient spintronic devices. This work opens up new opportunities for 2D antiferromagnetic spintronics and quantum devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
adfm202402091-sup-0001-SuppMat.pdf834.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 2001, 294, 1488.
- 2H. Yang, S. O. Valenzuela, M. Chshiev, S. Couet, B. Dieny, B. Dlubak, A. Fert, K. Garello, M. Jamet, D. E. Jeong, K. Lee, T. Lee, M. B. Martin, G. S. Kar, P. Sénéor, H. J. Shin, S. Roche, Nature 2022, 606, 663.
- 3S. Tehrani, B. Engel, J. M. Slaughter, E. Chen, M. DeHerrera, M. Durlam, P. Naji, R. Whig, J. Janesky, J. Calder, IEEE Trans. Magn. 2000, 36, 2752.
- 4S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 2004, 3, 868.
- 5S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S. H. Yang, Nat. Mater. 2004, 3, 862.
- 6T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Nat. Nanotechnol. 2016, 11, 231.
- 7J. Železný, P. Wadley, K. Olejník, A. Hoffmann, H. Ohno, Nat. Phys. 2018, 14, 220.
- 8V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys. 2018, 90, 015005.
- 9K. Olejník, T. Seifert, Z. Kašpar, V. Novák, P. Wadley, R. P. Campion, M. Baumgartner, P. Gambardella, P. Němec, J. Wunderlich, J. Sinova, P. Kužel, M. Müller, T. Kampfrath, T. Jungwirth, Sci. Adv. 2018, 4, eaar3566.
- 10Z. Liu, Z. Feng, H. Yan, X. Wang, X. Zhou, P. Qin, H. Guo, R. Yu, C. Jiang, Adv. Electron. Mater. 2019, 5, 1900176.
- 11M. A. McGuire, V. O. Garlea, S. Kc, V. R. Cooper, J. Yan, H. Cao, B. C. Sales, Phys. Rev. B 2017, 95, 144421.
- 12S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, M. J. Han, Phys. Rev. Mater. 2019, 3, 031001.
- 13W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu, C. Gao, Science 2019, 366, 983.
- 14M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, et al., Nature 2019, 576, 416.
- 15A. F. May, M.-H. Du, V. R. Cooper, M. A. McGuire, Phys. Rev. Mater. 2020, 4, 074008.
- 16J. Seo, E. S. An, T. Park, S. Y. Hwang, G. Y. Kim, K. Song, W.-s. Noh, J. Y. Kim, G. S. Choi, M. Choi, E. Oh, K. Watanabe, T. Taniguchi, J. H. Park, Y. J. Jo, H. W. Yeom, S. Y. Choi, J. H. Shim, J. S. Kim, Nat. Commun. 2021, 12, 2844.
- 17H. Zhang, D. Raftrey, Y. T. Chan, Y. T. Shao, R. Chen, X. Chen, X. Huang, J. T. Reichanadter, K. Dong, S. Susarla, L. Caretta, Z. Chen, J. Yao, P. Fischer, J. B. Neaton, W. Wu, D. A. Muller, R. J. Birgeneau, R. Ramesh, Sci. Adv. 2022, 8, eabm7103.
- 18G. Zhang, F. Guo, H. Wu, X. Wen, L. Yang, W. Jin, W. Zhang, H. Chang, Nat. Commun. 2022, 13, 5067.
- 19G. Zhang, Q. Luo, X. Wen, H. Wu, L. Yang, W. Jin, L. Li, J. Zhang, W. Zhang, H. Shu, H. Chang, Chin. Phys. Lett. 2023, 40, 117501.
- 20E. Maniv, N. L. Nair, S. C. Haley, S. Doyle, C. John, S. Cabrini, A. Maniv, S. K. Ramakrishna, Y. L. Tang, P. Ercius, R. Ramesh, Y. Tserkovnyak, A. P. Reyes, J. G. Analytis, Sci. Adv. 2021, 7, eabd8452.
- 21K. S. Burch, D. Mandrus, J.-G. Park, Nature 2018, 563, 47.
- 22H. J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, R. K. Kremer, Eur. J. Inorg. Chem. 2006, 2006, 1561.
- 23J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. G. Park, H. Cheong, Nano Lett. 2016, 16, 7433.
- 24Y. Tian, M. J. Gray, H. Ji, R. J. Cava, K. S. Burch, 2D Mater. 2016, 3, 025035.
10.1088/2053-1583/3/2/025035 Google Scholar
- 25C. Tian, F. Pan, S. Xu, K. Ai, T. Xia, P. Cheng, Appl. Phys. Lett. 2020, 116, 202402.
- 26Y. Zhang, H. Lu, X. Zhu, S. Tan, W. Feng, Q. Liu, W. Zhang, Q. Chen, Y. Liu, X. Luo, D. Xie, L. Luo, Z. Zhang, X. Lai, Sci. Adv. 2018, 4, eaao6791.
- 27E. Martino, C. Putzke, M. König, P. J. W. Moll, H. Berger, D. LeBoeuf, M. Leroux, C. Proust, A. Akrap, H. Kirmse, C. Koch, S. Zhang, Q. Wu, O. V. Yazyev, L. Forró, K. Semeniuk, NPJ 2D Mater. Appl. 2021, 5, 86.
- 28H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Sci. Rep. 2013, 3, 1608.
- 29J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, L. J. Li, ACS Nano 2014, 8, 923.
- 30W. Jin, G. Zhang, H. Wu, L. Yang, W. Zhang, H. Chang, Nanoscale 2023, 15, 5371.
- 31H. Yin, P. Zhang, W. Jin, B. Di, H. Wu, G. Zhang, W. Zhang, H. Chang, CrystEngComm 2023, 25, 1339.
- 32W. Jin, G. Zhang, H. Wu, L. Yang, W. Zhang, H. Chang, ACS Appl. Mater. Interfaces 2023, 15, 36519.
- 33W. Zhu, S. Xie, H. Lin, G. Zhang, H. Wu, T. Hu, Z. Wang, X. Zhang, J. Xu, Y. Wang, Y. Zheng, F. Yan, J. Zhang, L. Zhao, A. Patané, J. Zhang, H. Chang, K. Wang, Chin. Phys. Lett. 2022, 39, 128501.
- 34M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martı́nez Boubeta, J. L. Costa-Krämer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellón, M. R. Ibarra, F. Güell, F. Peiró, A. Cornet, Appl. Phys. Lett. 2001, 79, 1655.
- 35W. Wulfhekel, M. Klaua, D. Ullmann, F. Zavaliche, J. Kirschner, R. Urban, T. Monchesky, B. Heinrich, Appl. Phys. Lett. 2001, 78, 509.
- 36M. Julliere, Phys. Lett. A 1975, 54, 225.
- 37J. Taylor, H. Guo, J. Wang, Phys. Rev. B 2001, 63, 245407.
- 38D. Waldron, P. Haney, B. Larade, A. MacDonald, H. Guo, Phys. Rev. Lett. 2006, 96, 166804.
- 39K.-H. Min, D. H. Lee, S.-J. Choi, I.-H. Lee, J. Seo, D. W. Kim, K.-T. Ko, K. Watanabe, T. Taniguchi, D. H. Ha, C. Kim, J. H. Shim, J. Eom, J. S. Kim, S. Jung, Nat. Mater. 2022, 21, 1144.
- 40G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 41G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 42J. P. Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048.
- 43D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 45, 566.
- 44J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 45X. Li, M. Zhu, Y. Wang, F. Zheng, J. Dong, Y. Zhou, L. You, J. Zhang, Appl. Phys. Lett. 2023, 122, 082404.
- 46V. I. Anisimov, O. Gunnarsson, Phys. Rev. B 1991, 43, 7570.
- 47M. S. José, A. Emilio, D. G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, J. Phys. Condens Matter. 2002, 14, 2745.
- 48L. Bellaiche, D. Vanderbilt, Phys. Rev. B 2000, 61, 7877.
- 49R. Landauer, Phil. Mag. 1970, 21, 863.
- 50M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 1985, 31, 6207.