Advanced Hub Main Navigation Menu
Ionic-Liquid Gating of InAs Nanowire-Based Field-Effect Transistors
Johanna Lieb
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
Search for more papers by this authorValeria Demontis
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorDomenic Prete
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorDaniele Ercolani
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorValentina Zannier
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorLucia Sorba
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorShimpei Ono
Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, 240-0196 Japan
Search for more papers by this authorFabio Beltram
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorBenjamin Sacépé
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
Search for more papers by this authorCorresponding Author
Francesco Rossella
Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, 240-0196 Japan
E-mail: [email protected]Search for more papers by this authorJohanna Lieb
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
Search for more papers by this authorValeria Demontis
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorDomenic Prete
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorDaniele Ercolani
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorValentina Zannier
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorLucia Sorba
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorShimpei Ono
Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, 240-0196 Japan
Search for more papers by this authorFabio Beltram
NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
Search for more papers by this authorBenjamin Sacépé
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
Search for more papers by this authorCorresponding Author
Francesco Rossella
Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, 240-0196 Japan
E-mail: [email protected]Search for more papers by this authorAbstract
Here, the operation of a field-effect transistor based on a single InAs nanowire gated by an ionic liquid is reported. Liquid gating yields very efficient carrier modulation with a transconductance value 30 times larger than standard back gating with the SiO2/Si++ substrate. Thanks to this wide modulation, the controlled evolution from semiconductor to metallic-like behavior in the nanowire is shown. This work provides the first systematic study of ionic-liquid gating in electronic devices based on individual III–V semiconductor nanowires: this architecture opens the way to a wide range of fundamental and applied studies from the phase transitions to bioelectronics.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
adfm201804378-sup-0001-S1.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. 2017, 29, 1607054.
- 2H. Chun, T. D. Chung, Annu. Rev. Anal. Chem. 2015, 8, 441.
- 3M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
- 4D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, C. Gerbaldi, Phys. Rev. Lett. 2012, 108, 066807-1.
- 5Q. Dou, L. Liu, B. Yang, J. Lang, X. Yan, Nat. Commun. 2017, 8, 2188.
- 6Y. Ma, M. Pharr, L. Wang, J. Kim, Y. Liu, Y. Xue, R. Ning, X. Wang, H. U. Chung, X. Feng, John A. Rogers, Y. Huang, Small 2017, 13, 1602954.
- 7G. Tarabella, F. Mahvash Mohammadi, N. Coppedè, F. Barbero, S. Iannotta, C. Santato, F. Cicoira, Chem. Sci. 2013, 4, 1395.
- 8R. Parsons, Chem. Rev. 1990, 60, 813.
- 9J. Leger, M. Berggren, S. A. Carter, Iontronics: Ionic Carriers in Organic Electronic Materials and Devices, CRC Press, Boca Raton, FL, USA 2011.
- 10A. Tardella, J.-N. Chazalviel, Phys. Rev. B 1985, 32, 2439.
- 11Z. Lei, B. Chen, Y.-M. Koo, D. R. MacFarlane, Chem. Rev. 2017, 117, 6633.
- 12R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M. J. Biggs, M. Salanne, J. Ségalini, P. Simon, K. Kaneko, Nat. Mater. 2017, 16, 1225.
- 13J. D. Holbrey, R. D. Rogers, in Ionic Liquids, ACS Symposium Series, Vol. 818, (Eds: R. D. Rogers, K. R. Seddon), American Chemical Society, Washington, DC 2002, pp. 2–14.
- 14C. Chiappe, G. C. Demontis, V. Di Bussolo, M. J. Rodriguez Douton, F. Rossella, C. S. Pomelli, S. Sartinia, S. Caporali, Green Chem. 2017, 19, 1028.
- 15T. Fujimotoa, K. Awaga, Phys. Chem. Chem. Phys. 2013, 15, 8983.
- 16R. Misra, M. McCarthy, A. F. Hebard, Appl. Phys. Lett. 2007, 90, 52905.
- 17T. Petach, A. Mehta, R. Marks, B. Johnson, M. F. Toney, D. Goldhaber-Gordon, ACS Nano 2016, 10, 4565.
- 18M. Lee, J. R. Williams, S. Zhang, C. Daniel Frisbie, D. Goldhaber-Gordon, Phys. Rev. Lett. 2011, 107, 256601.
- 19H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, Adv. Funct. Mater. 2009, 19, 1046.
- 20S. Ono, S. Seki, R. Hirahara, Y. Tominari, J. Takeya, Appl. Phys. Lett. 2008, 92, 103313.
- 21M. Kühne, F. Paolucci, J. Popovic, P. M. Ostrovsky, J. Maier, J. H. Smet, Nat. Nano 2017, 12, 895.
- 22R. S. Gonnelli, F. Paolucci, E. Piatti, K. Sharda, A. Sola, M. Tortello, J. R. Nair, C. Gerbaldi, M. Bruna, S. Borini, Sci. Rep. 2015, 5, 9554.
- 23Y. J. Zhang, M. Onga, F. Qin, W. Shi, A. Zak, R. Tenne, J. Smet, Y. Iwasa, 2D Mater. 2018, 5, 035002.
10.1088/2053-1583/aab670 Google Scholar
- 24S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, A. F. Morpurgo, Nano Lett. 2014, 14, 2019.
- 25D. Braga, I. Gutierrez Lezama, H. Berge, A. F. Morpurgo, Nano Lett. 2012, 12, 5218.
- 26F. Qin, W. Shi, T. Ideue, M. Yoshida1, A. Zak, R. Tenne, T. Kikitsu, D. Inoue, D. Hashizume, Y. Iwasa, Nat. Commun. 2017, 8, 4465.
- 27S. Shimizu, T. Izuka, K. Khashi, J. Pu, K. Yanagi, T. Takenobu, Y. Iwasa, Small 2016, 12, 3388.
- 28K. Yanagi, S. I. Kanda, Y. Oshima, Y. Kitamura, H. Kawai, T. Yamamoto, T. Takenobu, Y. Nakai, Y. Maniwa, Nano Lett. 2014, 14, 6437.
- 29T. Sharf, N. P. Wang, J. W. Kevek, M. A. Brown, H. Wilson, S. Heinze, E. D. Minot, Nano Lett. 2014, 14, 4925.
- 30M. Pacios, I. M. Fernandez, X. Borrisë, M. del Valle, J. Bartrolí, E. L. Tamayo, P. Godignon, F. Pérez-Murano, M. J. Esplandiu, Nanoscale 2012, 4, 5917.
- 31G. T. Kim, T. Kennedy, M. Brandon, H. Geaney, K. M. Ryan, S. Passerini, G. B. Appetecchi, ACS Nano 2017, 11, 5933.
- 32M. P. Lu, E. Vire, L. Montès, Nanotechnology 2015, 26, 495501.
- 33J. Lee, J. Jang, B. Choi, J. Yoon, J.-Y. Kim, Y.-K. Choi, D. M. Kim, D. H. Kim, S. J. Choi, Sci. Rep. 2015, 5, 12286.
- 34S. Zhang, N. Tang, W. Jin, J. Duan, X. He, X. Rong, C. He, L. Zhang, X. Qin, L. Dai, Y. Chen, W. Ge, B. Shen, Nano Lett. 2015, 15, 1152.
- 35D. Nozaki, J. Kunstmann, F. Zörgiebel, S. Pregl, L. Baraban, W. M. Weber, T. Mikolajick, G. Cuniberti, Nano Res. 2014, 7, 380.
- 36O. Knopfmacher, D. Keller, M. Calame, C. Schonenberger, Procedia Chem. 2009, 1, 678.
- 37X. Peng, Y. Yang, Y. Hou, H. C. Travaglini, L. Hellwig, S. Hihath, K. Van Benthem, K. Lee, W. Liu, D. Yu, Phys. Rev. Appl. 2016, 5, 054008.
- 38T. M. Bretz-Sullivan, A. M. Goldman, Appl. Phys. Lett. 2015, 107, 113106.
- 39M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, T. X. Mei, J. Ind. Eng. Chem. 2013, 19, 106.
- 40D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Ktz, Electrochim. Acta 2013, 103, 119.
- 41S. Kazemiabnavi, Z. Zhang, K. Thornton, S. Banerjee, J. Phys. Chem. B 2016, 120, 5691.
- 42K. Prassides, Nat. Nanotechnol. 2011, 6, 400.
- 43S. Ono, K. Miwa, S. Seki, J. Takeya, Appl. Phys. Lett. 2009, 94, 063301.
- 44S. Ono, S. Seki, R. Hirahara, Y. Tominari, J. Takeya, Appl. Phys. Lett. 2008, 92, 103313.
- 45S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. 2017, 29, 1607054.
- 46C. Zhang, X. Li, IEEE Trans. Electron Devices 2016, 63, 223.
- 47H. Riel, L.-E. Wernersson, M. Hong, J. A. del Alamo, MRS Bull. 2014, 39, 668.
- 48F. Rossella, G. Pennelli, S. Roddaro, in Semiconductors and Semimetals, Vol. 98 (Eds: S. Mokkapati, C. Jagadish), Elsevier, San Diego, United States 2018, pp. 409–444.
- 49E. S. Tikhonov, D. V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, V. S. Khrapai, Sci. Rep. 2016, 6, 30621.
- 50S. Yazji, E. A. Hoffman, D. Ercolani, F. Rossella, A. Pitanti, A. Cavalli, S. Roddaro, G. Abstreiter, L. Sorba, I. Zardo, Nano Res. 2015, 8, 4048.
- 51Ö. T. Gül, H. Zhang, J. D. S. Bommer, M. W. A. De Moor, D. Car, S. R. Plissard, L. P. Kouwenhoven, Nat. Nanotechnol. 2018, 13, 192.
- 52F. Rossella, A. Bertoni, D. Ercolani, M. Rontani, L. Sorba, F. Beltram, S. Roddaro, Nat. Nanotechnol. 2014, 9, 997.
- 53C. Fasth, A. Fuhrer, M. T. Björk, L. Samuelson, Nano Lett. 2005, 5, 1487.
- 54M. Rocci, F. Rossella, U. P. Gomes, V. Zannier, F. Rossi, D. Ercolani, L. Sorba, F. Beltram, S. Roddaro, Nano Lett. 2016, 16, 7950.
- 55S. Upadhyay, R. Frederiksen, N. Lloret, L. De Vico, P. Krogstrup, J. H. Jensen, K. L. Martinez, J. Nygard, Appl. Phys. Lett. 2014, 104, 203504.
- 56K. Shibata, H. Yuan, Y. Iwasa, K. Hirakawa, Nat. Commun. 2013, 4, 2664.
- 57D. J. Carrad, A. B. Mostert, A. R. Ullah, A. M. Burke, H. J. Joyce, H. H. Tan, C. Jagadish, P. Krogstrup, J. Nygård, P. Meredith, A. P. Micolich, Nano Lett. 2017, 17, 827.
- 58S. Fahlvik Svensson, A. M. Burke, D. J. Carrad, M. Leijnse, H. Linke, A. P. Micolich, Adv. Funct. Mater. 2015, 25, 255.
- 59D. Liang, X. P. A. Gao, Nano Lett. 2012, 12, 3263.
- 60V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, Science 2012, 336, 1003.
- 61R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg, Nat. Rev. Mater. 2018, 3, 52.
- 62A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi, R. M. Lutchyn, Phys. Rev. X 2018, 8, 031041.
- 63U. P. Gomes, D. Ercolani, V. Zannier, F. Beltram, L. Sorba, Semicond. Sci. Technol. 2015, 30, 115012.
- 64J. Z. Zhao, W. Fan, M. J. Verstraete, Z. Zanolli, J. Fan, X. B. Yang, H. Xu, S. Y. Tong, Phys. Rev. Lett. 2016, 117, 116101.
- 65D. Lynall, S. V. Nair, D. Gutstein, A. Shik, I. G. Savelyev, M. Blumin, H. E. Ruda, Nano Lett. 2018, 18, 1387.
- 66T. A. Petach, K. V. Reich, X. Zhang, K. Watanabe, T. Taniguchi, B. I. Shklovskii, D. Goldhaber-Gordon, ACS Nano 2017, 11, 8395.
- 67P. Gallagher, M. Lee, T. A. Petach, S. W. Stanwyck, J. R. Williams, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, Nat. Commun. 2015, 6, 6437.
- 68K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 2008, 7, 855.
- 69K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Nanotechnol. 2011, 6, 408.
- 70D. Costanzo, H. Zhang, B. A. Reddy, H. Berger, A. F. Morpurgo, Nat. Nanotechnol. 2018, 13, 483.