Advanced Hub Main Navigation Menu
Interrupted Carbonyl-Alkyne Metathesis
Austin T. McFarlin
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorRebecca B. Watson
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorTroy E. Zehnder
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorCorresponding Author
Corinna S. Schindler
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorAustin T. McFarlin
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorRebecca B. Watson
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorTroy E. Zehnder
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorCorresponding Author
Corinna S. Schindler
Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109 United States
Search for more papers by this authorDedicated to Professor Eric N. Jacobsen on the occasion of his 60th birthday.
Abstract
Carbonyl-olefin metathesis and carbonyl-alkyne metathesis represent established reactivity modes between carbonyls, alkenes, and alkynes under Lewis and Brønsted acid catalysis. Recently, an interrupted carbonyl-olefin metathesis reaction has been reported that results in tetrahydrofluorenes via a distinct fragmentation of the reactive intermediate. We herein report the development of an analogous transformation interrupting the carbonyl-alkyne metathesis reaction path resulting in dihydrofluorene products relying on Lewis acidic superelectrophiles as active catalytic species.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
adsc201901358-sup-0001-misc_information.pdf3.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For carbonyl-olefin metathesis reactions proceeding via oxetane photoadducts, see:
- 1aG. Jones II, S. B. Schwartz, M. T. Marton, J. Chem. Soc. Chem. Commun. 1973, 374–375;
10.1039/C39730000374 Google Scholar
- 1bG. Jones II, M. A. Acquadro, M. A. Carmody, J. Chem. Soc. Chem. Commun. 1975, 206–207;
- 1cH. A. J. Carless, H. S. Trivedi, J. Chem. Soc. Chem. Commun. 1979, 382–383;
- 1dM. D'Auria, R. Racioppi, L. Viggiani, Photochem. Photobiol. Sci. 2010, 9, 1134–1138;
- 1eR. Pérez-Ruiz, S. Gil, M. A. Miranda, J. Org. Chem. 2005, 70, 1376–1381;
- 1fR. Pérez-Ruiz, M. A. Miranda, R. Alle, K. Meerholz, A. G. Griesbeck, Photochem. Photobiol. Sci. 2006, 5, 51–55;
- 1gR. A. Valiulin, A. G. Kutateladze, Org. Lett. 2009 , 11, 3886–3889;
- 1hR. A. Valiulin, T. M. Arisco, A. G. Kutateladze, J. Org. Chem. 2011, 76, 1319–1332;
- 1iR. A. Valiulin, T. M. Arisco, A. G. Kutateladze, J. Org. Chem. 2013, 78, 2012–2025.
- 2Succeeding one-step synthetic protocols were driven by the development of molybdenum alkylidenes as reagents: G. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 3800–3801.
- 3For Brønsted and Lewis acid mediated carbonyl-olefin metathesis reactions, see:
- 3aI. Schopov, C. Jossifov, Makromol. Chem. Rapid Commun. 1983, 4, 659–662;
- 3bA. Soicke, N. Slavov, J.-M. Neudörfl, H.-G. Schmalz, Synlett 2011, 17, 2487–2490;
- 3cH.-P. van Schaik, R.-J. Vijn, F. Bickelhaupt, Angew. Chem. Int. Ed. 1994, 33, 1611–1612;
- 3dC. Jossifov, R. Kalinova, A. Demonceau, Chim. Oggi 2008, 26, 85–87.
- 4For organocatalytic approaches, see:
- 4aA. K. Griffith, C. M. Vanos, T. H. Lambert, J. Am. Chem. Soc. 2012, 134, 18581–18584;
- 4bX. Hong, Y. Liang, A. K. Griffith, T. H. Lambert, K. N. Houk, Chem. Sci. 2014, 5, 471–475;
- 4cY. Zhang, J. Jermaks, S. N. MacMillan, T. H. Lambert, ACS Catal. 2019, DOI: 10.1021/acscatal.9b03656.
- 5Brønsted-acid catalyzed carbonyl-olefin metathesis reactions were recently reported to proceed inside a supramolecular host:
- 5aL. Catti, K. Tiefenbacher, Angew. Chem. Int. Ed. 2018, 57, 14589–14592;
- 5bY. Zhu, J. Rebek Jr, Y. Yu, Chem. Commun., 2019, 55, 3573–3577.
- 6
- 6aJ. R. Ludwig, P. M. Zimmerman, J. B. Gianino, C. S. Schindler, Nature 2016, 533, 374–379;
- 6bC. M. McAtee, P. S. Riehl, C. S. Schindler, J. Am. Chem. Soc. 2017, 139, 2960–2963;
- 6cE. J. Groso, A. N. Golonka, R. A. Harding, B. W. Alexander, T. M. Sodano, C. S. Schindler, ACS Catal. 2018, 8, 2006–201;
- 6dP. S. Riehl, D. J. Nasrallah, C. S. Schindler, Chem. Sci. 2019, 10, 10267–10274;
- 6eL. Ma, W. Li, H. Xi, X. Bai, E. Ma, X. Yan, Z. Li, Angew. Chem. Int. Ed. 2016, 55, 10410–10413;
- 6fC. S. Hanson, M. C. Psaltakis, J. J. Cortes, J. J. Devery III, J. Am. Chem. Soc. 2019, 141, 11870–11880.
- 7H. Albright, H. L. Vonesh, M. R. Becker, B. W. Alexander, J. R. Ludwig, R. A. Wiscons, C. S. Schindler, Org. Lett. 2018, 20, 4954–4958.
- 8U. P. N. Tran, G. Oss, M. Breugst, E. Detmar, D. P. Pace, K. Liyanto, T. V. Nguyen, ACS Catal. 2019, 9, 912–919.
- 9S. Ni, J. Franzén, Chem. Commun. 2018, 54, 12982–12985.
- 10U. P. N. Tran, G. Oss, D. P. Pace, J. Ho, T. V. Nguyen, Chem. Sci. 2018, 9, 5145–5151.
- 11J. R. Ludwig, S. Phan, C. M. McAtee, P. M. Zimmerman, J. J. Devery III, C. S. Schindler, J. Am. Chem. Soc. 2017, 139, 10832–10842.
- 12J. R. Ludwig, R. B. Watson, D. J. Nasrallah, J. B. Gianino, P. M. Zimmerman, R. A. Wiscons, C. S. Schindler, Science 2018, 361, 1363–1369.
- 13
- 13aC. E. Harding, G. R. Stanford, Jr. J. Org. Chem. 1989, 54, 3054–3056;
- 13bC. E. Harding, S. L. King, J. Org. Chem. 1992, 57, 883–886;
- 13cM. F. Wempe, J. R. Grunwell, J. Org. Chem. 1995, 60, 2714–2720;
- 13dJ. R. Rhee, M. J. Krische, Org. Lett. 2005, 7, 2493–2495;
- 13eK. C. M. Kurtz, R. P. Hsung, Y. Zhang, Org. Lett. 2006, 8, 231–234;
- 13fT. Jin, Y. Yamamoto, Org. Lett. 2007, 9, 5259–5262;
- 13gK. Tanaka, K. Sasaki, K. Takeishi, M. Hirano, Eur. J. Org. Chem. 2007, 19, 5675–5685;
- 13hA. Saito, M. Umakoshi, N. Yagyu, Y. Hanzawa, Org. Lett. 2008, 10, 1783–1785;
- 13iA. Saito, J. Kasai, Y. Odaira, H. Fukaya, Y. Hanzawa, J. Org. Chem. 2009, 74, 6544–5647;
- 13jA. Saito, J. Kasai, T. Konishi, Y. Hanzawa, J. Org. Chem. 2010, 75, 6980–6982;
- 13kJ. D. Cuthbertson, A. A. Godfrey, R. J. K. Taylor, Org. Lett. 2011, 13, 3976–3979;
- 13lM.-N. Lin, S.-H. Wu, M.-C. P. Yeh, Adv. Synth. Catal. 2011, 353, 3290–3294;
- 13mL. Liu, B. Xu, G. B. Hammond, Beilstein J. Org. Chem. 2011, 7, 606–614;
- 13nC. González-Rodríguez, L. Escalante, J. A. Varela, L. Castedo, C. Saá, Org. Lett. 2009, 11, 1531–1533;
- 13oK. Kumari, D. S. Raghuvanshi, K. N. Singh, Tetrahedron 2013, 69, 82–88;
- 13pM.-C. P. Yeh, M.-N. Lin, C.-H. Hsu, C.-J. Liang, J. Org. Chem. 2013, 78, 12381–12396;
- 13qI. R. Siddiqui, Rahila, S. Shamim, P. Rai, Shireen, M. A. Waseem, A. A. H. Abumhdi, Tetrahedron Lett. 2013, 54, 6991–6994;
- 13rM. Nayak, I. Kim, J. Org. Chem. 2015, 80, 11460–11467;
- 13sY. Jung, I. Kim, J. Org. Chem. 2015, 80, 2001–2005;
- 13tK. Ng, V. Tran, T. Minehan, Tetrahedron Lett. 2016, 57, 415–419;
- 13uA. M. Garkhedkar, G. C. Senadi, J.-J. Wang, Org. Lett. 2017, 19, 488–491;
- 13vK. Murai, K. Tateishi, A. Saito, Org. Biomol. Chem. 2016, 14, 10352–10356.
- 14
- 14aG. A. Olah, Angew. Chem. Int. Ed. Engl. 1993, 32, 767–788;
- 14bG. A. Olah, D. A. Klumpp, in Superelectrophiles and Their Chemistry. Wiley-VCH, Verlag GmbH & Co. KGaA, 2007.
10.1002/9780470185124 Google Scholar
- 15
- 15aH. Albright, P. S. Riehl, C. C. McAtee, J. P. Reid, J. R. Ludwig, L. A. Karp, P. M. Zimmerman, M. S. Sigman, C. S. Schindler, J. Am. Chem. Soc. 2019, 141, 1690–1700;
- 15bR. B. Watson, A. J. Davis, D. J. Nasrallah, J. L. Gomez-Lopez, C. S. Schindler, Chemrxiv 2019, DOI: 10.26434/chemrxiv.9911783.v1.
- 16
- 16aW. Beck, K. Sünkel, Chem. Rev. 1988, 88, 1405–1421;
- 16bS. H. Strauss, Chem. Rev. 1993, 93, 927–942.
- 17H. Kinoshita, C. Miyama, K. Miura, Tetrahedron Lett. 2016, 57, 5065–5069.