Advanced Hub Main Navigation Menu
A Versatile Synthetic Method for Photophysically and Chemically Stable [5]Rotaxane-Type Fluorescence Dyes of Various Colors by Using a Cooperative Capture Strategy
Corresponding Author
Yuki Ohishi
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorKohei Nishioki
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorYuta Miyaoka
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorKeita Serizawa
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorSouma Sugawara
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorKoichiro Hayashi
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorDaichi Inoue
Graduate School of Science and Engineering, University of Toyama, Toyama, 930–8555 Japan
Search for more papers by this authorMunetaka Iwamura
Graduate School of Science and Engineering, University of Toyama, Toyama, 930–8555 Japan
Search for more papers by this authorSatoru Yokoyama
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorJunya Chiba
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorCorresponding Author
Masahiko Inouye
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuki Ohishi
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorKohei Nishioki
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorYuta Miyaoka
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorKeita Serizawa
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorSouma Sugawara
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorKoichiro Hayashi
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorDaichi Inoue
Graduate School of Science and Engineering, University of Toyama, Toyama, 930–8555 Japan
Search for more papers by this authorMunetaka Iwamura
Graduate School of Science and Engineering, University of Toyama, Toyama, 930–8555 Japan
Search for more papers by this authorSatoru Yokoyama
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorJunya Chiba
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
Search for more papers by this authorCorresponding Author
Masahiko Inouye
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Rotaxane-type fluorescence dyes promise applications of optical and biological interest because their inner fluorescence cores are protected in inseparable host–guest systems. However, there are few relevant reports of such rotaxane-type fluorescence dyes due to the difficulty of their syntheses. Here, a versatile synthetic method is established for [5]rotaxane-type fluorescence dyes by employing a cooperative capture strategy. Using this method, [5]rotaxanes with emission colors ranging from blue to red are synthesized successfully. These [5]rotaxanes show higher emission quantum yields than the corresponding naked fluorescence dyes in water and even in the solid state. Furthermore, these rotaxanes show photostability and chemical stability, demonstrating the high applicability of [5]rotaxane-type fluorescence dyes for a variety of emitting materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
adom202301457-sup-0001-SuppMat.pdf11.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. E. Acree Jr, S. A. Tucker, J. C. Fetzer, Polycyclic Aromat. Compd. 1991, 2, 75.
- 2C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
- 3J. Jiao, J. Zhang, F. Yang, W. Song, D. Han, W. Wen, W. Qin, Eur. J. Pharm. Biopharm. 2020, 152, 123.
- 4E. A. Specht, E. Braselmann, A. E. Palmer, Annu. Rev. Physiol. 2017, 79, 93.
- 5K. Zhang, J. Liu, Y. Zhang, J. Fan, C.-K. Wang, L. Lin, J. Phys. Chem. C 2019, 123, 24705.
- 6H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano, Chem. Rev. 2010, 110, 2620.
- 7H. Nie, Z. Wei, X.-L. Ni, Y. Liu, Chem. Rev. 2022, 122, 9032.
- 8R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.
- 9D. Inamori, H. Masai, T. Tamaki, J. Terao, Chem. - Eur. J. 2020, 26, 3385.
- 10A. Yoshizawa, M. Inouye, ChemPhotoChem 2018, 2, 353.
- 11M. Inouye, A. Yoshizawa, M. Shibata, Y. Yonenaga, K. Fujimoto, T. Sakata, S. Matsumoto, M. Shiro, Org. Lett. 2016, 18, 1960.
- 12J. J. Gassensmith, J. M. Baumes, B. D. Smith, Chem. Commun. 2009, 6329.
- 13C. M. S. Yau, S. I. Pascu, S. A. Odom, J. E. Warren, E. J. F. Klotz, M. J. Frampton, C. C. Williams, V. Coropceanu, M. K. Kuimova, D. Phillips, S. Barlow, J.-L. Brédas, S. R. Marder, V. Millar, H. L. Anderson, Chem. Commun. 2008, 2897.
- 14M. T. Stone, H. L. Anderson, Chem. Commun. 2007, 2387.
- 15J. S. Park, J. N. Wilson, K. I. Hardcastle, U. H. F. Bunz, M. Srinivasarao, J. Am. Chem. Soc. 2006, 128, 7714.
- 16E. Arunkumar, C. C. Forbes, B. C. Noll, B. D. Smith, J. Am. Chem. Soc. 2005, 127, 3288.
- 17J. E. H. Buston, J. R. Young, H. L. Anderson, Chem. Commun. 2000, 905.
- 18H. Han, J. S. W. Seale, L. Feng, Y. Qiu, J. F. Stoddart, J. Polym. Sci. 2023, 61, 881.
- 19H. Masai, Y. Oka, J. Terao, Chem. Commun. 2022, 58, 1644.
- 20H.-Y. Zhou, Q.-S. Zong, Y. Han, C.-F. Chen, Chem. Commun. 2020, 56, 9916.
- 21X.-Q. Wang, W.-J. Li, W. Wang, H.-B. Yang, Chem. Commun. 2018, 54, 13303.
- 22X. Hou, C. Ke, J. F. Stoddart, Chem. Soc. Rev. 2016, 45, 3766.
- 23D. Tuncel, O. Unal, M. Artar, Isr. J. Chem. 2011, 51, 525.
- 24F. d'Orchymont, J. P. Holland, Angew. Chem., Int. Ed. 2022, 61, e202204072;
Angew. Chem. 2022, 134, e202204072.
10.1002/ange.202204072 Google Scholar
- 25A. W. H. Ng, S. K.-M. Lai, C.-C. Yee, H. Y. Au-Yeung, Angew. Chem., Int. Ed. 2022, 61, e202110200;
Angew. Chem. 2022, 134, e202110200.
10.1002/ange.202110200 Google Scholar
- 26J. Y. H. Man, H. Y. Au-Yeung, Beilstein J. Org. Chem. 2019, 15, 1829.
- 27A. W. H. Ng, C.-C. Yee, H. Y. Au-Yeung, Angew. Chem., Int. Ed. 2019, 58, 17375;
Angew. Chem. 2019, 131, 17536.
10.1002/ange.201908576 Google Scholar
- 28C. Ke, R. A. Smaldone, T. Kikuchi, H. Li, A. P. Davis, J. F. Stoddart, Angew. Chem., Int. Ed. 2013, 52, 381;
Angew. Chem. 2013, 125, 399.
10.1002/ange.201205087 Google Scholar
- 29K. Takeo, K. Ueraura, H. Mitoh, J. Carbohydr. Chem. 1988, 7, 293.
- 30Y. Niko, H. Moritomo, H. Sugihara, Y. Suzuki, J. Kawamata, G. Konishi, J. Mater. Chem. B 2015, 3, 184.
- 31X. Hou, C. Ke, C. Cheng, N. Song, A. K. Blackburn, A. A. Sarjeant, Y. Y. Botros, Y.-W. Yang, J. F. Stoddart, Chem. Commun. 2014, 50, 6196.
- 32C. Ke, N. L. Strutt, H. Li, X. Hou, K. J. Hartlieb, P. R. McGonigal, Z. Ma, J. Iehl, C. L. Stern, C. Cheng, Z. Zhu, N. A. Vermeulen, T. J. Meade, Y. Y. Botros, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 17019.
- 33M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem., Int. Ed. 2009, 48, 3244;
Angew. Chem. 2009, 121, 3292.
10.1002/ange.200805257 Google Scholar
- 34H. Brittain, D. L. Ambrozich, M. Saburi, J. H. Fendler, J. Am. Chem. Soc. 1980, 102, 6372.
- 35B. Carlotti, G. Consiglio, F. Elisei, C. G. Fortuna, U. Mazzucato, A. Spalletti, J. Phys. Chem. A 2014, 118, 3580.
- 36J. Maillard, K. Klehs, C. Rumble, E. Vauthey, M. Heilemann, A. Fürstenberg, Chem. Sci. 2021, 12, 1352.
- 37J. Gierschner, J. Shi, B. Milián-Medina, D. Roca-Sanjuán, S. Varghese, S. Y. Park, Adv. Opt. Mater. 2021, 9, 2002251.
- 38C. R. Benson, L. Kacenauskaite, K. L. VanDenburgh, W. Zhao, B. Qiao, T. Sadhukhan, M. Pink, J. Chen, S. Borgi, C.-H. Chen, B. J. Davis, Y. C. Simon, K. Raghavachari, B. W. Laursen, A. H. Flood, Chem 2020, 6, 1978.
- 39X. Hou, C. Ke, C. J. Bruns, P. R. McGonigal, R. B. Pettman, J. F. Stoddart, Nat. Commun. 2015, 6, 6884.
- 40M. Shimizu, T. Hiyama, Chem. Asian J. 2010, 5, 1516.
- 41N. Lardon, L. Wang, A. Tschanz, P. Hoess, M. Tran, E. D'Este, J. Ries, K. Johnsson, J. Am. Chem. Soc. 2021, 143, 14592.
- 42Y. Song, X. Zhang, Z. Shen, W. Yang, J. Wei, S. Li, X. Wang, X. Li, Q. He, S. Zhang, Q. Zhang, B. Gao, Anal. Chem. 2020, 92, 12137.
- 43C. Wang, M. Taki, Y. Sato, Y. Tamura, H. Yaginuma, Y. Okada, S. Yamaguchi, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 15817.
- 44J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet, L. D. Lavis, Nat. Methods 2015, 12, 244.
- 45K. Hayashi, Y. Miyaoka, Y. Ohishi, T. Uchida, M. Iwamura, K. Nozaki, M. Inouye, Chem. - Eur. J. 2018, 24, 14613.
- 46M. Inouye, K. Hayashi, Y. Yonenaga, T. Itou, K. Fujimoto, T. Uchida, M. Iwamura, K. Nozaki, Angew. Chem., Int. Ed. 2014, 53, 14392;
Angew. Chem. 2014, 126, 14620.
10.1002/ange.201408193 Google Scholar