Advanced Hub Main Navigation Menu
High Entropy Alloy Formation Derived from High Entropy Oxide: Unlocking the Active Sites for Green Methanol Production from CO2
Devender Goud
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorMadhurima Sarkar
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorHarishankar Kopperi
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorAmitabha Das
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552 India
Search for more papers by this authorBitan Ray
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorSreelakshmi Vijayaraghavan
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorBiswarup Pathak
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552 India
Search for more papers by this authorCorresponding Author
Sebastian C Peter
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorDevender Goud
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorMadhurima Sarkar
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorHarishankar Kopperi
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorAmitabha Das
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552 India
Search for more papers by this authorBitan Ray
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorSreelakshmi Vijayaraghavan
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
Search for more papers by this authorBiswarup Pathak
Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552 India
Search for more papers by this authorCorresponding Author
Sebastian C Peter
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In pursuit of novel materials for CO2 conversion to value-added chemicals, previous research has predominantly focused on copper-based, indium oxide (In2O3)-based, and alloy or intermetallic materials. However, a groundbreaking approach is presented by introducing a high-entropy-based material for CO2 reduction to methanol (CH3OH). This method offers scalability and simplicity, making it feasible for large-scale production of high-entropy-alloys (HEAs). The formation of HEA is facilitated by the presence of Fe, leads to the creation of a high-entropy oxide (HEO) during calcination. Through X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), comprehensively analyzed the oxidation states and coordination environments of all metals in both HEO and HEA. The formation of Fe3O4 within the HEO structure is evident, with each metal occupying either tetrahedral (Td) or octahedral (Oh) sites. The HEA formed shows exceptional CO2 conversion efficiency and higher CH3OH selectivity. Isolated sites of Co, Ni with Fe, Cu, and Zn, along with CuZn pair, are considered as the active sites for CO2 to CH3OH and further determined by DFT calculations. The altered reaction mechanism upon HEA formation compared to individual metals is investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Finally, Life-cycle assessment (LCA) indicates the carbon-negative footprint.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
adma202504180-sup-0001-SuppMat.docx16.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. C. Peter, ACS Energy Lett. 2018, 3, 1557.
- 2A. Goeppert, M. Czaun, J.-P. Jones, G. K. Surya Prakash, G. A. Olah, Chem. Soc. Rev. 2014, 43, 7995.
- 3A. Cherevotan, J. Raj, S. C. Peter, J. Mater. Chem. A 2021, 9, 27271.
- 4B. Ray, S. R. Churipard, S. C. Peter, J. Mater. Chem. A 2021, 9, 26498.
- 5J. Szanyi, D. W. Goodman, Catal. Lett. 1991, 10, 383.
- 6W. P. A. Jansen, J. Beckers, J. C. v. d. Heuvel, A. W. Denier, v. d. Gon, A. Bliek, H. H. Brongersma, J. Catal. 2002, 210, 229.
- 7J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434.
- 8S. Roy, A. Cherevotan, S. C. Peter, ACS Energy Lett. 2018, 3, 1938.
- 9A. H. Fakeeha, S. O. Kasim, A. A. Ibrahim, A. E. Abasaeed, A. S. Al-Fatesh, Materials 2019, 12, 1777.
- 10A. Cherevotan, B. Ray, S. R. Churipard, K. Kaur, U. K. Gautam, C. P. Vinod, S. C. Peter, Appl. Catal. B-Environ. 2022, 317, 121692.
- 11D. Goud, R. Gupta, R. Maligal-Ganesh, S. C. Peter, ACS Catal. 2020, 10, 14258.
- 12M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, Science 2012, 336, 893.
- 13S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Science 2016, 352, 969.
- 14M. Kurtz, N. Bauer, C. Büscher, H. Wilmer, O. Hinrichsen, R. Becker, S. Rabe, K. Merz, M. Driess, R. A. Fischer, M. Muhler, Catal. Lett. 2004, 92, 49.
- 15M. Behrens, J. Catal. 2009, 267, 24.
- 16O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Angew. Chem., Int. Ed. 2016, 128, 6369.
- 17J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X. Guo, C. Song, ACS Catal. 2021, 11, 1406.
- 18T. P. Araújo, J. Morales-Vidal, G. Giannakakis, C. Mondelli, H. Eliasson, R. Erni, J. A. Stewart, S. Mitchell, N. López, J. Pérez-Ramírez, Angew. Chem., Int. Ed. 2023, 62, 202306563.
- 19F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2014, 6, 320.
- 20A. Cherevotan, J. Raj, L. Dheer, S. Roy, S. Sarkar, R. Das, C. P. Vinod, S. Xu, P. Wells, U. V. Waghmare, S. C. Peter, ACS Energy Lett. 2021, 6, 509.
- 21D. Bagchi, J. Raj, A. K. Singh, A. Cherevotan, S. Roy, K. S. Manoj, C. P. Vinod, S. C. Peter, Adv. Mater. 2022, 34, 2109426.
- 22J. T. Sun, I. S. Metcalfe, M. Sahibzada, Ind. Eng. Chem. Res. 1999, 38, 3868.
- 23L. Liu, B. Mezari, N. Kosinov, E. J. M. Hensen, ACS Catal. 2023, 13, 15730.
- 24S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, K. Biswas, ACS Catal. 2020, 10, 3658.
- 25K. Li, W. Chen, Mater. Today Energy. 2021, 20, 100638.
- 26Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan, P. Jiang, R. Guo, L. Wang, ACS Catal. 2020, 10, 11280.
- 27E. P. George, D. Raabe, R. O. Ritchie, Nat. Rev. Mater. 2019, 4, 515.
- 28N. Kumar Katiyar, K. Biswas, J.-W. Yeh, S. Sharma, C. S. Tiwary, Nano Energy 2021, 88, 106261.
- 29L. Luo, L. Fu, H. Liu, Y. Xu, J. Xing, C.-R. Chang, D.-Y. Yang, J. Tang, Nat. Commun. 2022, 13, 2930.
- 30Z. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun. 2024, 15, 359.
- 31J. K. Pedersen, T. A. A. Batchelor, A. Bagger, J. Rossmeisl, ACS Catal. 2020, 10, 2169.
- 32H. Chen, K. Jie, C. J. Jafta, Z. Yang, S. Yao, M. Liu, Z. Zhang, J. Liu, M. Chi, J. Fu, S. Dai, Appl. Catal. B-Environ. 2020, 276, 119155.
- 33T. M. Butler, M. L. Weaver, J. Alloys Compd. 2016, 674, 229.
- 34E. G. Campari, A. Casagrande, E. Colombini, M. L. Gualtieri, P. Veronesi, Materials 2021, 14, 5994.
- 35B. S. Murty, S. Ranganathan, Int. Mater. Rev. 1998, 43, 101.
- 36T. Löffler, H. Meyer, A. Savan, P. Wilde, A. Garzón Manjón, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann, Adv. Energy Mater. 2018, 8, 1802269.
- 37M. Bondesgaard, N. L. N. Broge, A. Mamakhel, M. Bremholm, B. B. Iversen, Adv. Funct. Mater. 2019, 29, 1905933.
- 38Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489.
- 39P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nat. Commun. 2019, 10, 4011.
- 40F. Waag, Y. Li, A. R. Ziefuß, E. Bertin, M. Kamp, V. Duppel, G. Marzun, L. Kienle, S. Barcikowski, B. Gökce, RSC Adv. 2019, 9, 18547.
- 41M. Liu, Z. Zhang, F. Okejiri, S. Yang, S. Zhou, S. Dai, Adv. Mater. Interfaces. 2019, 6, 1900015.
- 42S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han, L. Lei, X. Zhang, R. Shahbazian-Yassar, J. Lu, Nat. Commun. 2020, 11, 2016.
- 43S. Sadjadi, M. M. Heravi, RSC Adv. 2017, 7, 30815.
- 44D. Goud, S. R. Churipard, D. Bagchi, A. K. Singh, M. Riyaz, C. P. Vinod, S. C. Peter, ACS Catal. 2022, 12, 11118.
- 45C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, Catal. Today. 2016, 277, 161.
- 46J. Liu, K. Li, Y. Song, C. Song, X. Guo, E&F 2021, 35, 10703.
- 47J. Ilsemann, A. Straß-Eifert, J. Friedland, L. Kiewidt, J. Thöming, M. Bäumer, R. Güttel, ChemCatChem 2019, 11, 4884.
- 48T. Fan, H. Liu, S. Shao, Y. Gong, G. Li, Z. Tang, J. Phys. Chem. Lett. 2021, 12, 10486.
- 49J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, Z. Li, Appl. Surf. Sci. 2015, 351, 504.
- 50C. Vogt, E. Groeneveld, G. Kamsma, M. Nachtegaal, L. Lu, C. J. Kiely, P. H. Berben, F. Meirer, B. M. Weckhuysen, Nat. Catal. 2018, 1, 127.
- 51D. L. Jurković, A. Pohar, V. D. B. C. Dasireddy, B. Likozar, Chem. Eng. Technol. 2017, 40, 973.
- 52Y. Choi, G. D. Sim, U. Jung, Y. Park, M. H. Youn, D. H. Chun, G. B. Rhim, K. Y. Kim, K. Y. Koo, Chem. Eng. J. 2024, 492, 152283.
- 53P. B. Rasmussen, P. M. Holmblad, T. Askgaard, C. V. Ovesen, P. Stoltze, J. K. Nørskov, I. Chorkendorff, Catal. Lett. 1994, 26, 373.
- 54X. Zhang, M. Schwarze, R. Schomäcker, R. van de Krol, F. F. Abdi, Nat. Commun. 2023, 14, 991.
- 55A. Sternberg, C. M. Jens, A. Bardow, Green Chem. 2017, 19, 2244.
- 56Á. Galán-Martín, V. Tulus, I. Díaz, C. Pozo, J. Pérez-Ramírez, G. Guillén-Gosálbez, One Earth 2021, 4, 565.
- 57M. Omran, T. Fabritius, E.-P. Heikkinen, G. Chen, R. Soc. Open Sci. 2017, 4, 170710.
- 58J. Xi, K. Yan, N. Zhu, X. Ge, Q. Yuwen, M. Chen, H. Jiang, Y. Cao, X. Zhou, X. Duan, AIChE J. 2024, 70, 18416.
- 59D. Goud, A. Cherevotan, R. Maligal-Ganesh, B. Ray, S. D. Ramarao, J. Raj, S. C. Peter, Chem. Asian J. 2019, 14, 4819.
- 60M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schlögl, J. Am. Chem. Soc. 2010, 132, 14745.
- 61P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 62G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 63G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 64Y.-f. Yu, W. Zhang, Q.-j. Fang, X.-l. Zhang, S.-T. Zhao, W.-x. Chen, G.-l. Zhuang, Appl. Surf. Sci. 2023, 626, 157246.