Advanced Hub Main Navigation Menu
2D Biomimetic Membranes Constructed by Charge Assembly and Hydrogen Bonding for Precise Ion Separation
Zixiao Lv
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorHaidong Li
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorChuanxi Wen
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Longlong Tian
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiMeng Chen
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorWangsuo Wu
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Zhan Li
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Qinghai Nationalities University, No. 3, Bayi Middle Road, Xining, 810007 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZixiao Lv
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorHaidong Li
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorChuanxi Wen
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Longlong Tian
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiMeng Chen
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorWangsuo Wu
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Zhan Li
Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Qinghai Nationalities University, No. 3, Bayi Middle Road, Xining, 810007 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Designing well-ordered, multifunctional layered membranes with high selectivity and long-term stability remains a significant challenge. Here, a simple strategy is introduced that utilizes charge repulsion between graphene oxide (GO) and engineered bacteria to induce liquid crystal formation, enabling their layer-by-layer self-assembly on a polyethersulfone membrane. The interlayer pressure flattens the bacteria, removing interlayer water and forming a densely packed structure. This compression decreases the spacing between functional groups, leading to a robust hydrogen bonding network and a significant enhancement in mechanical properties (12.42 times tensile strength increase). Notably, the pressure preserves the activity of the super uranyl-binding protein of engineered bacteria, which selectively coordinates with uranyl (UO22+) through high-affinity coordination bonds, enabling recognition and sieving of target ions. The membrane demonstrates near 100% rejection of UO22+, K/U, and V/U selectivity of ≈140 and ≈40, respectively, while maintaining long-term stability. This strategy provides a versatile platform for the precise design of high-performance membranes, advancing the field of molecular transport in energy and environmental applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
adma202419496-sup-0001-SuppMat.docx6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Ma, Y. Li, S. Gao, J. Cui, Q. Qu, Y. Wang, C. Huang, G. Fu, ACS Appl. Mater. Interfaces 2020, 12, 23644.
- 2Y. Hao, X. Liu, Y. Zhang, X. Zhang, Z. Li, X. Chen, Adv. Sci. 2024, 11, 2406535.
- 3X. Casas, M. Niederberger, E. Lizundia, ACS Appl. Mater. Interfaces 2020, 12, 29264.
- 4B. Mi, Science 2014, 343, 740.
- 5H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530.
- 6P. R. Kidambi, P. Chaturvedi, N. K. Moehring, Science 2021, 374, eabd7687.
- 7Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, E. Riedo, Science 2010, 328, 1373.
- 8K. Chen, X. Tang, B. Jia, C. Chao, Y. Wei, J. Hou, L. Dong, X. Deng, T.-H. Xiao, K. Goda, L. Guo, Nat. Mater. 2022, 21, 1121.
- 9Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, J. Mech. Phys. Solids 2012, 60, 591.
- 10P. Liu, J. Hou, Y. Zhang, L. Li, X. Lu, Z. Tang, Inorg. Chem. Front. 2020, 7, 2560.
- 11Y. Zhang, J. Yu, X. Wang, D. M. Durachko, S. Zhang, D. J. Cosgrove, Science 2021, 372, 706.
- 12Y. Zhang, P. Lei, T. Meng, K. Deng, X. Xiao, Q. Zeng, New J. Chem. 2023, 47, 7716.
- 13L. Zhang, M. Zhang, G. Liu, W. Jin, X. Li, Adv. Funct. Mater. 2021, 31, 2100110.
- 14J. Liang, X. Zhang, H. Li, C. Wen, L. Tian, X. Chen, Z. Li, Adv. Mater. 2024, 36, 2470240.
10.1002/adma.202470240 Google Scholar
- 15Y. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu, N. Wang, Angew. Chem., Int. Ed. 2020, 59, 4262.
- 16L. Zhou, M. Bosscher, C. Zhang, S. Özçubukçu, L. Zhang, W. Zhang, C. J. Li, J. Liu, M. P. Jensen, L. Lai, Nat. Chem. 2014, 6, 236.
- 17S. Kou, Z. Yang, F. Sun, ACS Appl. Mater. Interfaces 2017, 9, 2035.
- 18A. R. Koltonow, C. Luo, J. Luo, J. Huang, ACS Omega 2017, 2, 8005.
- 19C.-N. Yeh, K. Raidongia, J. Shao, Q.-H. Yang, J. Huang, Nat. Chem. 2015, 7, 166.
- 20Z. Zhang, L. Zheng, W. Huang, Q. Cheng, Proc. Natl. Acad. Sci. USA 2024, 121, e2322663121.
- 21M. J. Wilhelm, M. Sharifian Gh, T. Wu, Y. Li, C.-M. Chang, J. Ma, H.-L. Dai, Biophys. J. 2021, 120, 2461.
- 22J. Yang, M. Li, S. Fang, Y. Wang, H. He, C. Wang, Z. Zhang, B. Yuan, L. Jiang, R. H. Baughman, Q. Cheng, Science 2024, 383, 771.
- 23J. Zhu, F. Li, Y. Hou, H. Li, D. Xu, J. Tan, J. Du, S. Wang, Z. Liu, H. Wu, F. Wang, Y. Su, H.-M. Cheng, Nat. Mater. 2024, 23, 604.
- 24L. Wu, L. Zeng, X. Jiang, J. Am. Chem. Soc. 2015, 137, 10052.
- 25P. Renati, P. Madl, Int. J. Mol. Sci. 2024, 25, 3846.
- 26Z.-L. Liu, X. Chen, ACS Biomater. Sci. Eng. 2022, 8, 5094.
- 27E. Kim, X. Qin, J. B. Qiao, Q. Zeng, J. D. Fortner, F. Zhang, Sci. Rep. 2020, 10, 19082.
- 28K. W. Putz, O. C. Compton, M. J. Palmeri, S. T. Nguyen, L. C. Brinson, Adv. Funct. Mater. 2010, 20, 3322.
- 29L. Liu, Y. Gao, Q. Liu, J. Kuang, D. Zhou, S. Ju, B. Han, Z. Zhang, Small 2013, 9, 2466.
- 30S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, ACS Nano 2008, 2, 572.
- 31A. Satti, P. Larpent, Y. Gun'ko, Carbon 2010, 48, 3376.
- 32T. Gong, S. Won, J.-H. Kim, H.-J. Lee, C. Lee, S.-M. Lee, ChemComm 2015, 51, 2671.
- 33G. He, M. Xu, J. Zhao, S. Jiang, S. Wang, Z. Li, X. He, T. Huang, M. Cao, H. Wu, Adv. Mater. 2017, 29, 1605898.
- 34Q. Fang, X. Zhou, W. Deng, Z. Zheng, Z. Liu, Sci. Rep. 2016, 6, 33185.
- 35K. Liang, E. M. Spiesz, D. T. Schmieden, A.-W. Xu, A. S. Meyer, M.-E. Aubin-Tam, ACS Nano 2020, 14, 14731.
- 36M. Cano, U. Khan, T. Sainsbury, A. O'Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito, J. N. Coleman, Carbon 2013, 52, 363.
- 37H. Chathuranga, K. C. Wasalathilake, I. Marriam, J. MacLeod, Z. Zhang, R. Bai, Z. Lei, Y. Li, Y. Liu, H. Yang, Compos. Sci. Technol. 2021, 216, 109046.
- 38D. J. Pochapski, C. Carvalho dos Santos, G. W. Leite, S. H. Pulcinelli, C. V. Santilli, Langmuir 2021, 37, 13379.
- 39L. Zhang, S. Yang, J. Qian, D. Hua, Ind. Eng. Chem. Res. 2017, 56, 1860.
- 40H.-B. Pan, C. M. Wai, L.-J. Kuo, G. A. Gill, J. S. Wang, R. Joshi, C. J. Janke, Dalton Trans. 2020, 49, 2803.
- 41L. Feng, H. Wang, T. Feng, B. Yan, Q. Yu, J. Zhang, Z. Guo, Y. Yuan, C. Ma, T. Liu, Angew. Chem., Int. Ed. 2022, 134, e202101015.
10.1002/ange.202101015 Google Scholar
- 42C. Ling, X. Liu, X. Yang, J. Hu, R. Li, L. Pang, H. Ma, J. Li, G. Wu, S. Lu, Ind. Eng. Chem. Res. 2017, 56, 1103.
- 43J. Gan, L. Zhang, Q. Wang, Q. Xin, Y. Xiong, E. Hu, Z. Lei, H. Wang, H. Wang, Int. J. Biol. Macromol. 2023, 238, 124074.
- 44R. Li, L. Qiu, Y. Gao, M. Zhang, Z. Xing, G. Wu, Radiat. Phys. Chem. 2022, 196, 110139.
- 45Y. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu, N. Wang, Angew. Chem., Int. Ed. 2020, 59, 4262.
- 46Z. Wang, Q. Meng, R. Ma, Z. Wang, Y. Yang, H. Sha, X. Ma, X. Ruan, X. Zou, Y. Yuan, Chem 2020, 6, 1683.
- 47B. Yan, C. Ma, J. Gao, Y. Yuan, N. Wang, Adv. Mater. 2020, 32, 1906615.
- 48D. Wang, J. Song, J. Wen, Y. Yuan, Z. Liu, S. Lin, H. Wang, H. Wang, S. Zhao, X. Zhao, Adv. Energy Mater. 2018, 8, 1870143.
10.1002/aenm.201870143 Google Scholar
- 49Q.-W. Meng, X. Zhu, W. Xian, S. Wang, Z. Zhang, L. Zheng, Z. Dai, H. Yin, S. Ma, Q. Sun, Proc. Natl. Acad. Sci. USA 2024, 121, e2316716121.
- 50J. Liang, X. Zhang, H. Li, C. Wen, L. Tian, X. Chen, Z. Li, Adv. Mater. 2024, 36, 2404629.
- 51K. Ventura-Martinez, Y. Zhu, A. Booth, K. B. Hatzell, Nano Lett. 2024, 24, 13551.
- 52X. Mao, L. Qian, L. Tian, X. Chen, W. Wu, Z. Li, Nano Lett. 2024, 24, 15151.