Advanced Hub Main Navigation Menu
Advanced Multifunctional Memristor Based on Kondo Insulator Gd-Doped SmB6 Nanobelt for Artificial Synapses and Neurons
Gang Cao
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJunfeng Xie
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYan Tian
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorHaojian Lin
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZairan Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJun Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKai Wang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Shaozhi Deng
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGang Cao
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJunfeng Xie
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYan Tian
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorHaojian Lin
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZairan Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJun Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorKai Wang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Shaozhi Deng
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Memristor is believed as an ideal solution for high-density storage and neuromorphic computing, which can simultaneouly integrate volatile with nonvolatile functionalities. Seeking excellent resistive-switching materials and probing their underlying physical mechanism remain great challenges until now. Among most candidates, Kondo insulator SmB6 nanobelt attracts much interest because its capaciouslattice space and abundant valency electrons are very beneficial for the formation of Ag conductive filaments (CFs). In this work, multifunctional memristor are successfully fabricated based on Gd-doped SmB6 nanobelt, interchanging among threshold (TS), self-rectifying (SR) and bipolar resistance switching (BRS) states by regulating the compliance current. The memristor exhibits a low set/reset voltage (0.92 V/−0.28 V), ultrahigh ON/OFF ratio (≈105), fast switching time (30 ns/35 ns) and extra-low power consumption (≈7 fJ), overwhelming most known memristors. Furthermore, the memristor can operate well at high temperature up to 300 °C, and still maintain outstanding resistive-switching characteristics with a slight decay less than 5% even after a month’s continuous operation. Their transition mechanism from volatile to non-volatile state can be attributed to the surface self-diffusion effect of Ag CFs. Consequently, this research may shed new light on promoting advanced neuromorphic computing based on nanomaterials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
adfm202505133-sup-0001-SuppMat.docx4.3 MB | Supporting Information |
adfm202505133-sup-0002-MovieS1.mp44 MB | Supplemental Movie 1 |
adfm202505133-sup-0003-MovieS2.mp42.2 MB | Supplemental Movie 2 |
adfm202505133-sup-0004-MovieS3.mp43.6 MB | Supplemental Movie 3 |
adfm202505133-sup-0005-MovieS4.mp44.5 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
- 2M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H. Y. Chen, R. Midya, F. Ye, H. Jiang, Z. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, J. J. Yang, Nature 2023, 615, 823.
- 3S. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S. W. Kwon, Y. Ju, M. Kim, W. Yi, S. Han, B. Kwon, B. Seo, K. Lee, G. H. Koh, K. Lee, Y. Song, C. Choi, D. Ham, S. J. Kim, Nature 2022, 601, 211.
- 4L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang, X. Huang, F. Liu, H. Xia, P. Wang, M. Xu, W. Xiong, W. Hu, J. Xu, X. Zhang, L. Ye, X. Miao, Science 2021, 373, 1353.
- 5K. Roy, A. Jaiswal, P. Panda, Nature 2019, 575, 607.
- 6M. A. Zidan, J. P. Strachan, W. D. Lu, Nat. Electron. 2018, 1, 22.
- 7L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang, H. Wang, C. Liu, J. He, Adv. Mater. 2022, 34, 2108313.
- 8Y. Wang, D. Shen, Y. Liang, Y. Zhao, X. Chen, L. Zhou, M. Zhang, J. Xu, X. Liu, E. Hu, L. Wang, R. Xu, Y. Tong, Mater. Sci. Semicon. Proc. 2021, 135, 106123.
- 9T. Yu, Z. Zhao, H. Jiang, Z. Weng, Y. Fang, C. Liu, W. Lei, S. B. Shafe, M. N. Mohtar, Mater. Today Nano 2022, 19, 100233.
- 10P. Saha, M. Sahad E, S. Sathyanarayana, B. C. Das, ACS Nano 2023, 18, 1137.
- 11G. Zhou, Z. Wang, B. Sun, F. Zhou, L. Sun, H. Zhao, X. Hu, X. Peng, J. Yan, H. Wang, W. Wang, J. Li, B. Yan, D. Kuang, Y. Wang, L. Wang, S. Duan, Adv. Electron. Mater. 2022, 8, 2101127.
- 12Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, Z. Yu, F. Yuan, E. Pop, H. S. Philip Wong, M. Lanza, Nat. Electron. 2018, 1, 458.
- 13Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhou, C. Li, H. Wu, Q. Xia, J. J. Yang, Adv. Funct. Mater. 2018, 28, 1704862.
- 14L. Li, K. Sun, C. Kurdak, J. W. Allen, Nat. Rev. Phys. 2020, 2, 463.
- 15P. Syers, D. Kim, M. S. Fuhrer, J. Paglione, Phys. Rev. Lett. 2015, 114, 096601.
- 16A. Majid, A. Batool, S. U. D. Khan, A. Ahmad, Int. J. Quantum Chem. 2021, 121, 26452.
- 17H. Chen, X. Yang, P. Lv, P. Tian, S. Wan, Q. Liu, Chem. Eng. J. 2022, 450, 137960.
- 18D. J. Kim, J. Xia, Z. Fisk, Nat. Mater. 2014, 13, 466.
- 19K. K. Yadav, M. Sreekanth, S. Ghosh, M. Jha, CrystEngComm 2020, 22, 5473.
- 20N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu, S. Kunii, Phys. Rev. B 2023, 68, 224305.
10.1103/PhysRevB.68.224305 Google Scholar
- 21H. Gan, B. Ye, L. Zhou, T. Zhang, Y. Tian, S. Deng, H. He, Liu, F., Mater. Today Nano 2020, 12, 100097.
10.1016/j.mtnano.2020.100097 Google Scholar
- 22Y. Fu, Y. Zhou, X. Huang, B. Dong, F. Zhuge, Y. Li, Y. He, Y. Chai, X. Miao, Adv. Funct. Mater. 2022, 32, 2111996.
- 23Y. E. Syu, T. C. Chang, J. H. Lou, T. M. Tsai, K. C. Chang, M. J. Tsai, Y. L. Wang, M. Liu, S. M. Sze, Appl. Phys. Lett. 2013, 102, 172903.
- 24D. Wang, S. Zhao, L. Li, L. Wang, S. Cui, S. Wang, Z. Lou, G. Shen, Adv. Funct. Mater. 2022, 32, 2200241.
- 25H. Y. Li, X. D. Huang, J. H. Yuan, Y. F. Lu, T. Q. Wan, Y. Li, K. H. Xue, Y. H. He, M. Xu, H. Tong, X. S. Miao, Adv. Electron. Mater. 2020, 6, 2000309.
- 26I. Vaskivskyi, I. A. Mihailovic, S. Brazovskii, J. Gospodaric, T. Mertelj, D. Svetin, P. Sutar, D. Mihailovic, Nat. Commun. 2016, 7, 11442.
- 27K. Zhang, X. Zhao, Y. Han, K. Hu, Y. Zhang, L. Li, Q. Zhou, X. Shan, X. Lin, K. Shan, Z. Ma, Q. Liu, Z. Song, F. Wang, Adv. Electron. Mater. 2022, 8, 2200702.
- 28C. Qin, L. S. Sremaniak, J. L. Whitten, J. Phys. Chem. B 2006, 110, 11272.
- 29P. Jamilpanah, H. Pahlavanzadeh, A. Kheradmand, Heat Mass Transfer 2017, 53, 1343.
- 30Y. Liu, L. Wu, Q. Liu, L. Liu, S. Ke, Z. Peng, T. Shi, X. Yuan, H. Huang, J. Li, C. Ye, P. K. Chu, J. Wang, X. F. Yu, Adv. Funct. Mater. 2022, 32, 2110900.
- 31J. Y. Mao, S. Wu, G. Ding, Z. P. Wang, F. S. Qian, J. Q. Yang, Y. Zhou, S. T. Han, Small 2022, 18, 2106253.
- 32T. Ahmed, S. Kuriakose, S. A. Tawfik, E. L. Mayes, A. Mazumder, S. Balendhran, M. J. S. Spencer, D. Akinwande, M. Bhaskaran, S. Sriram, S. Walia, Adv. Funct. Mater. 2022, 32, 2107068.
- 33Y. Li, L. Loh, S. Li, L. Chen, B. Li, M. Bosman, K. W. Ang, Nat. Electron. 2021, 4, 348.
- 34K. Ranganathan, M. Fiegenbaum-Raz, A. Ismach, Adv. Funct. Mater. 2020, 30, 2005718.
- 35X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, Q. Liu, Small 2019, 15, 1901423.
- 36Y. Yang, H. Du, Q. Xue, X. Wei, Z. Yang, C. Xu, D. Lin, W. Jie, J. Hao, Nano Energy 2019, 57, 566.
- 37K. Zhang, X. Zhao, Y. Han, K. Hu, Y. Zhang, L. Li, Q. Zhou, X. Shan, X. Lin, K. Shan, Z. Ma, Q. Liu, Z. Song, F. Wang, Adv. Electron. Mater. 2022, 8, 2200702.
- 38S. Kim, S. Choi, W. Lu, ACS Nano 2014, 8, 2369.
- 39S. H. Lee, J. Moon, Y. Jeong, J. Lee, X. Li, H. Wu, W. D. Lu, ACS Appl. Electron. Mater. 2020, 2, 701.
- 40B. G. Chae, J. B. Seol, J. H. Song, K. Baek, S. H. Oh, H. Hwang, C. G. Park, Adv. Mater. 2017, 29, 1701752.
- 41Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W. D. Lu, Nat. Commun. 2014, 5, 4232.
- 42I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 2012, 11, 530.
- 43I. Valov, G. Staikov, J. Solid State Electr. 2013, 17, 365.
- 44X. Ding, P. Huang, Y. Zhao, Y. Feng, L. Liu, IEEE Tran. Electron Devices 2022, 69, 1034.
- 45C. Herring, J. Appl. Phys. 1950, 21, 301.
- 46J. Sun, L. He, Y. C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S. X. Mao, J. Li, Nat. Mater. 2014, 13, 1007.
- 47W. W. Mullins, J. Appl. Phys. 1957, 28, 333.
- 48W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Z. Sun, X. Chen, D. Ielmini, Nat. Commun. 2019, 10, 81.
- 49M. Zhao, S. Wang, D. Li, R. Wang, F. Li, M. Wu, K. Liang, H. Ren, X. Zheng, C. Guo, X. Ma, B. Zhu, H. Wang, Y. Hao, Adv. Electron. Mater. 2022, 8, 2101139.
- 50Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, X. J. Zhu, Adv. Funct. Mater. 2012, 22, 2759.
- 51K. Wang, J. Chen, X. Yan, Nano Energy 2021, 79, 105453.
- 52X. Yan, Y. Pei, H. Chen, J. Zhao, Z. Zhou, H. Wang, L. Zhang, J. Wang, X. Li, C. Qin, G. Wang, Z. Xiao, Q. Zhao, K. Wang, H. Li, D. Ren, Q. Liu, H. Zhou, J. Chen, P. Zhou, Adv. Mater. 2019, 31, 1805284.
- 53Z. Wang, W. Wang, P. Liu, G. Liu, J. Li, J. Zhao, Z. Zhou, J. Wang, Y. Pei, Z. Zhao, J. Li, L. Wang, Z. Jian, Y. Wang, J. Guo, X. Yan, Research 2022, 2022, 9754876.
- 54K. Wang, S. Ren, Y. Jia, X. Yan, Adv. Sci. 2024, 11, 2309489.
- 55P. Lei, H. Duan, L. Qin, X. Wei, R. Tao, Z. Wang, F. Guo, M. Song, W. Jie, J. Hao, Adv. Funct. Mater. 2022, 32, 2201276.
- 56D. Dev, A. Krishnaprasad, M. S. Shawkat, Z. He, S. Das, D. Fan, H. S. Chung, Y. Jung, T. Roy, IEEE Electron Device Lett. 2020, 41, 936.
- 57X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei, R. Cao, Z. Yao, X. Zhu, F. Zhang, H. Lv, S. Long, M. Liu, IEEE Electron Device Lett. 2017, 39, 308.
- 58H. Gan, B. Ye, T. Zhang, N. Xu, H. He, S. Deng, F. Liu, Cryst. Growth Des. 2019, 19, 845.