Advanced Hub Main Navigation Menu
Dynamic and High-Precision Sound Manipulation by Acoustic Metamaterial-Empowered Phased Arrays
An Chen
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorYi-Fei Xia
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZhao-Xian Chen
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorHua-Jin Su
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorJing-Jing Liu
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Jing Yang
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXue-Feng Zhu
School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Bin Liang
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-Chun Cheng
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAn Chen
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorYi-Fei Xia
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZhao-Xian Chen
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorHua-Jin Su
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorJing-Jing Liu
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Jing Yang
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXue-Feng Zhu
School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Bin Liang
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-Chun Cheng
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
High-precision dynamic sound manipulation remains a fundamental challenge in acoustics, crucial for diverse applications. Phased arrays (PAs), widely applied for real-time sound control, are limited in resolution and complexity. Recently-emerged acoustic metamaterials (AMs) significantly simplify high-precision wavefront engineering, yet remain passive with fixed functionalities or have complicated active control systems to enhance resolution. To break through the above limitations, here a metamaterial-empowered PA (MPA) that achieves dynamic sound manipulation with a diffraction limit-approaching resolution using only wavelength-scale transducers is proposed and experimentally demonstrated. It is analytically proven that acoustically shrinking each element by designed AMs substantially eliminates the aliasing effects and enhances the spatial precision of sound manipulation. Thanks to the uniformity of metamaterial units attached one-by-one to PA elements, the produced sound field can be reformed in real time without structural modifications. The unique performance of the MPA is showcased via two typical examples of high-quality programmable focusing and real-time imaging with subwavelength resolution, which is beyond attainable relying solely on current PAs or AMs. The proposed mechanism offers an integrated and low-cost solution to the long-standing challenge of dynamic and high-precision wave manipulation and has far-reaching impacts from biomedical imaging to nondestructive evaluation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
adfm202425833-sup-0001-SuppMat.docx2 MB | Supporting Information |
adfm202425833-sup-0002-MovieS1.mp42.2 MB | Supplemental Movie 1 |
adfm202425833-sup-0003-MovieS2.mp41.7 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Ozcelik, J. Rufo, F. Guo, Y. Gu, P. Li, J. Lata, T. J. Huang, Nat. Methods 2018, 15, 1021.
- 2S. Yang, Z. Tian, Z. Wang, J. Rufo, P. Li, J. Mai, J. Xia, H. Bachman, P. Huang, M. Wu, C. Chen, L. P. Lee, T. J. Huang, Nat. Mater. 2022, 21, 540.
- 3Y. Zhu, J. Hu, X. Fan, J. Yang, B. Liang, X. Zhu, J. Cheng, Nat. Commun. 2018, 9, 1632.
- 4S. Zhou, X. Gao, G. Park, X. Yang, B. Qi, M. Lin, H. Huang, Y. Bian, H. Hu, X. Chen, R. Wu, B. Liu, W. Yue, C. Lu, R. Wang, P. Bheemreddy, S. Qin, A. Lam, K. Wear, M. Andre, E. Kistler, D. Newell, S. Xu, Nature 2024, 629, 810.
- 5X. Gao, X. Chen, H. Hu, X. Wang, W. Yue, J. Mu, Z. Lou, R. Zhang, K. Shi, X. Chen, M. Lin, B. Qi, S. Zhou, C. Lu, Y. Gu, X. Yang, H. Ding, Y. Zhu, H. Huang, Y. Ma, M. Li, A. Mishra, J. Wang, S. Xu, Nat. Commun. 2022, 13, 7757.
- 6A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, S. Subramanian, Nat. Commun. 2015, 6, 8661.
- 7Z. Hong, J. Zhang, B. W. Drinkwater, Phys. Rev. Lett. 2015, 114, 214301.
- 8W. Legon, T. F. Sato, A. Opitz, J. Mueller, A. Barbour, A. Williams, W. J. Tyler, Nat. Neurosci. 2014, 17, 322.
- 9Y. Shen, X. Zhu, F. Cai, T. Ma, F. Li, X. Xia, Y. Li, C. Wang, H. Zheng, Phys. Rev. Appl. 2019, 11, 034009.
- 10X. Jiang, J. He, C. Zhang, H. Zhao, W. Wang, D. Ta, C. Qiu, Sci. China Phys. Mech. 2021, 65, 224311.
10.1007/s11433-021-1784-3 Google Scholar
- 11C. Wang, B. Qi, M. Lin, Z. Zhang, M. Makihata, B. Liu, S. Zhou, Y. Huang, H. Hu, Y. Gu, Y. Chen, Y. Lei, T. Lee, S. Chien, K. Jang, E. B. Kistler, S. Xu, Nat. Biomed. Eng. 2021, 5, 749.
- 12Z. Ma, K. Melde, A. G. Athanassiadis, M. Schau, H. Richter, T. Qiu, P. Fischer, Nat. Commun. 2020, 11, 4537.
- 13A. Carpentier, R. Stupp, A. M. Sonabend, H. Dufour, O. Chinot, B. Mathon, F. Ducray, J. S. Weinberg, B. P. Liu, E. Guemas, C. Desseaux, C. Schmitt, G. Bouchoux, M. Canney, A. Idbaih, Nat. Commun. 2024, 15, 1650.
- 14Z. Li, C. Fei, S. Yang, C. Hou, J. Zhao, Y. Li, C. Zheng, H. Wu, Y. Quan, T. Zhao, D. Chen, D. Li, G. Niu, W. Ren, M. Xiao, Y. Yang, Adv. Funct. Mater. 2022, 32, 2209173.
- 15J. Chen, J. Xiao, D. Lisevych, A. Shakouri, Z. Fan, Nat. Commun. 2018, 9, 4920.
- 16B. Assouar, B. Liang, Y. Wu, Y. Li, J.-C. Cheng, Y. Jing, Nat. Rev. Mater. 2018, 3, 460.
- 17K. Melde, A. G. Mark, T. Qiu, P. Fischer, Nature 2016, 537, 518.
- 18G. Ma, M. Yang, S. Xiao, Z. Yang, P. Sheng, Nat. Mater. 2014, 13, 873.
- 19B. Liang, J. Cheng, C. Qiu, Nanophotonics 2018, 7, 1191.
- 20P. Li, Z. Li, W. Zhou, S. Wang, L. Meng, Y. Peng, Z. Chen, H. Zheng, X. Zhu, Adv. Funct. Mater. 2022, 32, 2203109.
- 21L. Cox, K. Melde, A. Croxford, P. Fischer, B. W. Drinkwater, Phys. Rev. Appl. 2019, 12, 064055.
- 22Y. Shen, Y. Peng, F. Cai, K. Huang, D. Zhao, C. Qiu, H. Zheng, X. Zhu, Nat. Commun. 2019, 10, 3411.
- 23H. Li, J. Liu, Z. Chen, K. Wu, B. Liang, J. Yang, J. Cheng, J. Christensen, Nat. Commun. 2023, 14, 7633.
- 24P. Zhang, T. Li, J. Zhu, X. Zhu, S. Yang, Y. Wang, X. Yin, X. Zhang, Nat. Commun. 2014, 5, 4316.
- 25K. Mohanty, S. Mahajan, G. Pinton, M. Muller, Y. Jing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1460.
- 26J. Xu, H. Cai, Z. Wu, X. Li, C. Tian, Z. Ao, V. C. Niu, X. Xiao, L. Jiang, M. Khodoun, M. Rothenberg, K. Mackie, J. Chen, L. P. Lee, F. Guo, Nat. Commun. 2023, 14, 869.
- 27H. Dong, C. Shen, S. Zhao, W. Qiu, H. Zheng, C. Zhang, S. A. Cummer, Y. Wang, D. Fang, L. Cheng, Natl. Sci. Rev. 2022, 9, nwac030.
- 28H. Xie, Z. Hou, Phys. Rev. Appl. 2021, 15, 034054.
- 29Y. Jia, D. Wu, J. Yao, Q. Wei, Z. Xu, X. Liu, Appl. Phys. Lett. 2020, 116, 263504.
- 30J. Zhong, C. Hu, K. Wang, J. Ji, T. Zhuang, H. Zou, J. Lu, H. Heo, B. Liang, Y. Jing, J. Cheng, Phys. Rev. Lett. 2023, 131, 234001.
- 31M. Xu, W. S. Harley, Z. Ma, P. V. S. Lee, D. J. Collins, Adv. Mater. 2023, 35, 2208002.
- 32E. Dong, T. Zhang, J. Zhang, X. Su, S. Qu, X. Ye, Z. Gao, C. Gao, J. Hui, Z. Wang, N. X. Fang, Y. Zhang, Nat. Commun. 2025, 16, 308.
- 33H. Zhou, C. Li, J. Zhu, C. Hu, Y. Wang, Y. Wang, C. Qiu, Adv. Mat. 2024, 36, 2313004.
- 34X. Lu, J. Twiefel, Z. Ma, T. Yu, J. Wallaschek, P. Fischer, Adv. Sci. 2021, 8, 2100888.
- 35Z. Chen, Y. Peng, H. Li, J. Liu, J. Liu, Y. Ding, B. Liang, X. Zhu, Y. Lu, J. Cheng, A. Alù, Sci. Adv. 2024, 10, adm9673.
- 36Z. Tian, C. Shen, J. Li, E. Reit, Y. Gu, S. A. Cummer, T. J. Huang, Adv. Funct. Mater. 2019, 29, 1808489.
- 37S. A. Cummer, J. Christensen, A. Alù, Nat. Rev. Mater. 2016, 1, 16001.
- 38B. Popa, D. Shinde, A. Konneker, S. A. Cummer, Phys. Rev. B 2015, 91, 220303.
- 39X. Wen, X. Zhu, A. Fan, W. Y. Tam, J. Zhu, H. W. Wu, F. Lemoult, M. Fink, J. Li, Commun. Phys. 2022, 5, 18.
- 40G. Ma, X. Fan, P. Sheng, M. Fink, Proc. Natl. Acad. Sci. USA 2018, 115, 26.
- 41H. Zhang, Q. Wang, M. Fink, G. Ma, Nat. Commun. 2024, 15, 1270.
- 42X. Wang, G. Ma, Chin. Phys. Lett. 2025, 42, 014301.
- 43A. Grinenko, P. D. Wilcox, C. R. Courtney, B. W. Drinkwater, Proc. Math. Phys. Eng. Sci. 2012, 468, 3571.
- 44J. Liu, B. Liang, J. Yang, J. Yang, J. Cheng, Sci. Rep. 2020, 10, 3827.
- 45D. A. Russell, J. P. Titlow, Y. Bemmen, Am. J. Phys. 1999, 67, 660.
- 46Y. Li, X. Jiang, B. Liang, J. Cheng, L. Zhang, Phys. Rev. Appl. 2015, 4, 024003.
- 47S. Huang, S. Xie, H. Gao, T. Hao, S. Zhang, T. Liu, Y. Li, J. Zhu, Fundam. Res. 2024, 4, 57.
- 48S. Wang, P. Wu, V. Su, Y. Lai, C. Chu, J. Chen, S. Lu, J. Chen, B. Xu, C. Kuan, T. Li, S. Zhu, D. P. Tsai, Nat. Commun. 2017, 8, 187.
- 49H. Ge, M. Yang, C. Ma, M. Lu, Y. Chen, N. Fang, S. A. Cummer, P. Sheng, Natl. Sci. Rev. 2018, 5, 159.
- 50Y. Guo, B. Li, X. Yin, Natl. Sci. Rev. 2023, 10, nwac058.
- 51L. Zeng, Z. Li, Z. Lin, H. Wu, Y. Peng, X. Zhu, Appl. Phys. Lett. 2022, 120, 202202.
- 52Z. Li, K. Chen, F. Li, Z. Shi, Q. Sun, P. Li, Y. Peng, L. Huang, G. Yang, H. Zheng, X. Zhu, Nat. Commun. 2023, 14, 5319.
- 53C. Zhou, K. Xu, D. Ta, J. Acoust. Soc. Am. 2023, 154, 279.
- 54J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. J. Garcia-Vidal, Nat. Phys. 2010, 7, 52.
- 55C. Hu, J. Weng, Y. Ding, B. Liang, J. Yang, J. Cheng, Appl. Phys. Lett. 2021, 118, 203504.
- 56X. Xu, P. Robles-Martinez, C. M. Madla, F. Joubert, A. Goyanes, A. W. Basit, S. Gaisford, Addit. Manuf. 2020, 33, 101071.